skip to main content


Search for: All records

Creators/Authors contains: "Moat, Ben I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract Northward ocean heat transport at 26°N in the Atlantic Ocean has been measured since 2004. The ocean heat transport is large—approximately 1.25 PW, and on interannual time scales it exhibits surprisingly large temporal variability. There has been a long-term reduction in ocean heat transport of 0.17 PW from 1.32 PW before 2009 to 1.15 PW after 2009 (2009–16) on an annual average basis associated with a 2.5-Sv (1 Sv ≡ 106 m3 s−1) drop in the Atlantic meridional overturning circulation (AMOC). The reduction in the AMOC has cooled and freshened the upper ocean north of 26°N over an area following the offshore edge of the Gulf Stream/North Atlantic Current from the Bahamas to Iceland. Cooling peaks south of Iceland where surface temperatures are as much as 2°C cooler in 2016 than they were in 2008. Heat uptake by the atmosphere appears to have been affected particularly along the path of the North Atlantic Current. For the reduction in ocean heat transport, changes in ocean heat content account for about one-quarter of the long-term reduction in ocean heat transport while reduced heat uptake by the atmosphere appears to account for the remainder of the change in ocean heat transport. 
    more » « less
  3. null (Ed.)
    Abstract. The strength of the Atlantic meridional overturning circulation(AMOC) at 26∘ N has now been continuously measured by the RAPIDarray over the period April 2004–September 2018. This record provides uniqueinsight into the variability of the large-scale ocean circulation,previously only measured by sporadic snapshots of basin-wide transport fromhydrographic sections. The continuous measurements have unveiled strikingvariability on timescales of days to a decade, driven largely bywind forcing, contrasting with previous expectations about a slowly varyingbuoyancy-forced large-scale ocean circulation. However, these measurementswere primarily observed during a warm state of the Atlantic multidecadalvariability (AMV) which has been steadily declining since a peak in2008–2010. In 2013–2015, a period of strong buoyancy forcing by theatmosphere drove intense water-mass transformation in the subpolar NorthAtlantic and provides a unique opportunity to investigate the response ofthe large-scale ocean circulation to buoyancy forcing. Modelling studiessuggest that the AMOC in the subtropics responds to such events with anincrease in overturning transport, after a lag of 3–9 years. At45∘ N, observations suggest that the AMOC may already beincreasing. Examining 26∘ N, we find that the AMOC is no longerweakening, though the recent transport is not above the long-term mean.Extending the record backwards in time at 26∘ N with oceanreanalysis from GloSea5, the transport fluctuations at 26∘ N areconsistent with a 0- to 2-year lag from those at 45∘ N, albeit withlower magnitude. Given the short span of time and anticipated delays in thesignal from the subpolar to subtropical gyres, it is not yet possible todetermine whether the subtropical AMOC strength is recovering nor how theAMOC at 26∘ N responds to intense buoyancy forcing. 
    more » « less
  4. null (Ed.)